Abstract

Venomous toxins hold immense value as tools in elucidating the intricate structure and underlying mechanisms of ion channels. In this article, we identified of two novel toxins, Hainantoxin-XXI (HNTX-XXI) and Hainantoxin-XXII (HNTX-XXII), derived from the venom of the Chinese spider Ornithoctonus hainana. HNTX-XXI, boasting a molecular weight of 6869.095 Da, comprises 64 amino acid residues and contains 8 cysteines. Meanwhile, HNTX-XXII, with a molecular weight of 8623.732 Da, comprises 77 amino acid residues and contains 12 cysteines. Remarkably, we discovered that both HNTX-XXI and HNTX-XXII possess the ability to activate TRPV1. They activated TRPV1 with EC50 values of 3.6 ± 0.19 μM and 862 ± 56 nM, respectively. Furthermore, the current generated by the activation of TRPV1 by these toxins can be rapidly blocked by ruthenium red. Intriguingly, our analysis revealed that the interaction between HNTX-XXI and TRPV1 is mediated by three key amino acid residues: L465, V469, and D471. Similarly, the interaction between HNTX-XXII and TRPV1 is facilitated by four key amino acid residues: A657, F659, E600, and R601. These findings provide profound insights into the molecular basis of toxin-TRPV1 interactions and pave the way for future research exploring the therapeutic potential of these toxic peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.