Abstract

Rust fungi cause significant damage to wheat production worldwide. In order to mitigate disease impact and improve food security via durable resistance, it is important to understand the molecular basis of host-pathogen interactions. Despite a long history of research and high agricultural importance, still little is known about the interactions between the stripe rust fungus and wheat host on the gene expression level. Here, we present analysis of the molecular interactions between a major wheat pathogen-Puccinia striiformis f. sp. tritici (Pst)-in resistant and susceptible host backgrounds. Using plants with durable nonrace-specific resistance along with fully susceptible ones allowed us to show how gene expression patterns shift in compatible versus incompatible interactions. The pathogen showed significantly greater number and fold changes of overexpressed genes on the resistant host than the susceptible host. Stress-related pathways including MAPK, oxidation-reduction, osmotic stress, and stress granule formation were, almost exclusively, upregulated in the resistant host background, suggesting the requirement of the resistance-countermeasure mechanism facilitated by Pst. In contrast, the susceptible host background allowed for broad overrepresentation of the nutrient uptake pathways. This is the first study focused on the stripe rust pathogen-wheat interactions, on the whole transcriptome level, from the pathogen side. It lays a foundation for the better understanding of the resistant/susceptible hosts versus pathogenic fungus interaction in a broader sense.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call