Abstract

AbstractThe chromosomes undergo a condensation‐decondensation cycle within the life cycle of mammalian cells. Chromosome condensation is a complex and critical event that is necessary for the equal distribution of genetic material between the two daughter cells. Although chromosome condensation‐decondensation and segregation is mechanistically complex, it proceeds with high fidelity during the eukaryotic cell division cycle. Cell fusion studies have indicated the presence of chromosome condensation factors in mammalian cells during mitosis. If extracts from mitotic cells are injected into immature oocytes of Xenopus laevis, they induce meiotic maturation (i.e. germinal vesicle breakdown and chromosome condensation) within 2–3 hours. Recently, we showed that the maturation‐promoting activity of the mitotic cell extracts is inactivated by certain protein factors present in cells during the G1 period. The activity of the G1 factors coincides with the process of chromosome decondensation that begins at telophase and continues throughout the G1 period. These studies have revealed that the mitotic factors and the G1 factors play a pivotal role in the regulation of condensation and decondensation of chromosomes. Furthermore, our studies strongly suggest that nonhistone protein phosphorylation and dephosphorylation may mediate chromosome condensation and decondensation, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call