Abstract

The rational design of multifunctional materials with properties that can be selectively controlled at the molecular level is key to the development and application of nanoscale devices. In this study, molecular dynamics simulations using ligand-field molecular mechanics are performed to elucidate, for the first time, the molecular mechanisms responsible for the variation of the spin-crossover properties of the {Fe(pz)[Pt(CN)4]} metal-organic framework upon water adsorption. The simulations demonstrate a direct relationship between the water loading adsorbed in the pores and the variation of the spin-crossover transition temperature, with the high-spin state of the material becoming gradually more stabilized as the number of adsorbed water molecules increases. The decrease of the spin-crossover temperature of {Fe(pz)[Pt(CN)4]} upon water adsorption predicted by the simulations is in agreement with the available experimental data and is traced back to the elongation of the bonds between the Fe(II) atoms and the organic linkers induced by interactions of the adsorbed water molecules with the framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.