Abstract
It is known that exposure to organophosphorus pesticides (OP) including phoxim can produce oxidative stress, neurotoxicity, and greatly attenuate cocooning rate in the silkworm, Bombyx mori. Cerium treatment has been demonstrated to relieve phoxim-induced toxicity in B. mori; however, very little is known about the molecular mechanisms of silk gland injury due to OP exposure and protection of gland damage due to cerium pretreatment. The aim of this study was to evaluate silk gland damage and its molecular mechanisms in phoxim-induced silkworm toxicity and the protective mechanisms of cerium following exposure to phoxim. The results showed that phoxim exposure resulted in severe gland damage, reductions in protein synthesis and the cocooning rate of silkworms. Cerium (Ce) attenuated gland damage caused by phoxim, promoted protein synthesis, increased the antioxidant capacity of the gland and increased the cocooning rate of B. mori. Furthermore, digital gene expression data suggested that phoxim exposure led to significant up-regulation of 714 genes and down-regulation of 120 genes. Of these genes, 122 were related to protein metabolism, specifically, the down-regulated Ser2, Ser3, Fib-L, P25, and CYP450. Ce pretreatment resulted in up-regulation of 162 genes, and down-regulation of 141 genes, importantly, Ser2, Ser3, Fib-L, P25, and CYP333B8 were up-regulated. Treatment with CeCl3 + phoxim resulted in higher levels of Fib-L, P25, Ser2, Ser3, CAT, TPx, and CYP333B8 expression in the silk gland of silkworms. These findings indicated that Ce increased cocooning rate via the promotion of silk protein synthesis-related gene expression in the gland under phoxim-induced toxicity. These findings may expand the application of rare earths in sericulture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.