Abstract

Myxococcus xanthus is an environmental bacterium that displays a complex life cycle that includes motility, predation, multicellular fruiting body development, and sporulation. Given the elaborate fruiting body development of this bacterial species, M. xanthus has served as a model organism for the study of multicellular development of bacteria, and a remarkable number of genes have been identified that contribute to the regulation of this highly dynamic process. Included among these developmental factors is a robust repertoire of signaling proteins, which have arisen from extensive gene duplication in M. xanthus and related species. In this review, we explore several aspects of the molecular mechanisms of signaling in M. xanthus development. This includes mechanisms of kin selection, single-cell sensing of nutrient depletion and the stringent response, the production of and response to extracellular population cues, and the contribution of several two-component signaling systems regulating developmental transcriptional programs. Collectively, these signaling mechanisms function to tightly regulate the sensing of nutrient depletion, the aggregation of populations of cells, and the temporal and spatial formation of complex fruiting bodies and sporulation of M. xanthus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.