Abstract
The pathway of sulfate assimilation, which provides plants with the essential nutrient sulfur, is tightly regulated and coordinated with the demand for reduced sulfur. The responses of metabolite concentrations, enzyme activities and mRNA levels to various signals and environmental conditions have been well described for the pathway. However, only little is known about the molecular mechanisms of this regulation. To date, nine transcription factors have been described to control transcription of genes of sulfate uptake and assimilation. In addition, other levels of regulation contribute to the control of sulfur metabolism. Post-transcriptional regulation has been shown for sulfate transporters, adenosine 5′phosphosulfate reductase, and cysteine synthase. Several genes of the pathway are targets of microRNA miR395. In addition, protein–protein interaction is increasingly found in the center of various regulatory circuits. On top of the mechanisms of regulation of single genes, we are starting to learn more about mechanisms of adaptation, due to analyses of natural variation. In this article, the summary of different mechanisms of regulation will be accompanied by identification of the major gaps in knowledge and proposition of possible ways of filling them.
Highlights
Sulfur is an essential nutrient for all organisms, found in the amino acids cysteine and methionine, in a large number of cofactors and prosthetic groups, such as FeS centers, thiamine, or Sadenosylmethionine, and in a plethora of primary and secondary metabolites
QUESTIONS It is obvious that our knowledge of molecular mechanisms of regulation of sulfate assimilation has been improved
We know that sulfate assimilation is preferentially localized in bundle sheath cells surrounding the veins in Arabidopsis (Aubry et al, 2014), but we do not know the mechanisms and the biological significance
Summary
The pathway of sulfate assimilation, which provides plants with the essential nutrient sulfur, is tightly regulated and coordinated with the demand for reduced sulfur. The responses of metabolite concentrations, enzyme activities and mRNA levels to various signals and environmental conditions have been well described for the pathway. Only little is known about the molecular mechanisms of this regulation. Nine transcription factors have been described to control transcription of genes of sulfate uptake and assimilation. Other levels of regulation contribute to the control of sulfur metabolism. Several genes of the pathway are targets of microRNA miR395. The summary of different mechanisms of regulation will be accompanied by identification of the major gaps in knowledge and proposition of possible ways of filling them
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.