Abstract

Copper (Cu) is an essential nutrient for plant growth and development. This metal serves as a constituent element or enzyme cofactor that participates in many biochemical pathways and plays a key role in photosynthesis, respiration, ethylene sensing, and antioxidant systems. The physiological significance of Cu uptake and compartmentalization in plants has been underestimated, despite the importance of Cu in cellular metabolic processes. As a micronutrient, Cu has low cellular requirements in plants. However, its bioavailability may be significantly reduced in alkaline or organic matter-rich soils. Cu deficiency is a severe and widespread nutritional disorder that affects plants. In contrast, excessive levels of available Cu in soil can inhibit plant photosynthesis and induce cellular oxidative stress. This can affect plant productivity and potentially pose serious health risks to humans via bioaccumulation in the food chain. Plants have evolved mechanisms to strictly regulate Cu uptake, transport, and cellular homeostasis during long-term environmental adaptation. This review provides a comprehensive overview of the diverse functions of Cu chelators, chaperones, and transporters involved in Cu homeostasis and their regulatory mechanisms in plant responses to varying Cu availability conditions. Finally, we identified that future research needs to enhance our understanding of the mechanisms regulating Cu deficiency or stress in plants. This will pave the way for improving the Cu utilization efficiency and/or Cu tolerance of crops grown in alkaline or Cu-contaminated soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.