Abstract
Meiotic recombination not only ensures the stability of chromosome numbers during the sexual reproduction in eukaryotes, but also shuffles the maternal and paternal genetic materials to generate genetic diversity in the gametes. Therefore, meiotic recombination is an important pathway for genetic diversity, which has been considered as a major driving force for species evolution and biodiversity in nature. In most eukaryotes, meiotic recombination is strictly limited, despite the large variation of physical genome size and chromosome numbers among species, but the mechanisms suppressing meiotic recombination remain elusive. Recently, several suppressors have been identified through the forward genetics screen, and revealed the functions and regulation pathways of these suppressors. In this review, we summarize the breakthrough discovery of meiotic recombination suppressors in plants based on research in Arabidopsis, with particular focus on the gene function and its regulation network to elucidate the molecular mechanisms of meiotic recombination suppression in plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.