Abstract

The antiepileptic drug riluzole is used as a therapeutic agent in amyotrophic lateral sclerosis due to its neuroprotective effects. Besides presynaptic inhibition of GABAergic and preferentially glutamatergic transmission, it also potentiates postsynaptic GABA(A)-receptor function. We investigated the postsynaptic effects of riluzole on GABA(A)-receptor channels by use of the patch-clamp technique. Recombinant alpha1beta2gamma(2s) and alpha1beta2 GABA(A) receptors were expressed in HEK 293 cells by transient transfection. Pulses of GABA were applied in combination with different concentrations of riluzole to whole cell or outside-out patches with either alpha1beta2gamma(2s) or alpha1beta2 GABA(A)-receptor channels. Co-application of riluzole led to a slight decrease of absolute peak current amplitudes and steady-state currents in prolonged presence of GABA at saturating concentrations. In the presence of riluzole, enhancement of current amplitudes was observed with lower concentrations of GABA at alpha1beta2gamma(2s) receptors and to a lower extent also at alpha1beta2 receptors. Thus, the potentiating effect of riluzole was shown to be not abolished in the absence of the gamma(2s)-subunit. A further prominent effect of riluzole was a highly significant acceleration of the time course of current decay, most probably pointing to an open-channel block-like mechanism of action. As both receptor subtypes were affected similarly by the block, it could be concluded that the respective binding sites should be assumed within a region of high sequence homology like it is given for the channel-lining M2 domain of GABA(A)-receptor subunits. In conclusion, three different molecular mechanisms of interaction of the neuroprotective compound riluzole were observed at two different subtypes of GABA(A) receptor channels. The results further point to the impact of the inhibitory as well as the excitatory synaptic activity as a pharmacological target to counteract chronic excitotoxicity and reveal molecular mechanisms of action of the only one neuroprotective drug in current clinical use in patients suffering from amyotrophic lateral sclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call