Abstract

Although the human immune system can recognize and eradicate tumor cells, tumors have also been shown to develop different strategies to escape immune surveillance, which has been described for the first time in different mouse models. The evasion of immune recognition was often associated with a poor prognosis and reduced survival of patients. During the last years the molecular mechanisms, which protect tumor cells from this immune attack, have been identified and appear to be more complex than initially expected. However, next to the composition of cellular, soluble and physical components of the tumor microenvironment, the tumor cells changes to limit immune responses. Of particular importance are classical and non-classical human leukocyte antigen (HLA) class I antigens, which often showed a deregulated expression in cancers of distinct origin. Furthermore, HLA class I abnormalities were linked to defects in the interferon signaling, which have both been shown to be essential for mounting immune responses and are involved in resistances to T cell-based immunotherapies. Therefore this review summarizes the expression, regulation, function and clinical relevance of HLA class I antigens in association with the interferon signal transduction pathway and its role in adaptive resistances to immunotherapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call