Abstract

It has been reported that glycogen in Escherichia coli has two structural states, that is, fragility and stability, which alters dynamically. However, molecular mechanisms behind the structural alterations are not fully understood. In this study, we focused on the potential roles of two important glycogen degradation enzymes, glycogen phosphorylase (glgP) and glycogen debranching enzyme (glgX), in glycogen structural alterations. The fine molecular structure of glycogen particles in Escherichia coli and three mutants (ΔglgP, ΔglgX and ΔglgP/ΔglgX) were examined, which showed that glycogen in E. coli ΔglgP and E. coli ΔglgP/ΔglgX were consistently fragile while being consistently stable in E. coli ΔglgX, indicating the dominant role of GP in glycogen structural stability control. In sum, our study concludes that glycogen phosphorylase is essential in glycogen structural stability, leading to molecular insights into structural assembly of glycogen particles in E. coli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.