Abstract

Oligodendrocyte cell death is a significant component of the secondary damage following spinal cord injury (SCI) and other neurodegenerative disorders. However, the mechanisms underlying oligodendroglial apoptotic cell death and the potential relationship to Fas receptor (FasR) activation require further clarification. Here, using MO3.13, a human oligodendroglial cell line, we show clear evidence of apoptosis upon exposure to soluble Fas ligand (sFasL). Apoptosis was linked to caspase-8, -9, and -3 activity and resulted in DNA fragmentation detected by deoxynucleotide transferase dUTP nick end-labeling (TUNEL). Dissipation of mitochondrial membrane potential (DeltaPsim) was an early event and temporally coincided with mitochondrial outer membrane permeability (MOMP), demonstrated by the presence of cytochrome c and apoptosis inducing factor (AIF) in cytosolic fractions. Pretreatment with 100 microM of the caspase inhibitor zVAD-fmk prior to sFasL exposure reduced caspase activation, the dissipation of DeltaPsim, MOMP, and apoptotic cell death. These data provide clear evidence that Fas activation induces apoptosis in oligodendrocytes signaling through intrinsic and extrinsic events. Moreover, we provide evidence for the first time that AIF may play a role in caspase-independent apoptotic execution following Fas activation of oligodendrocytes. These data also add to an emerging body of evidence, which strongly implicates Fas-mediated apoptosis of oligodendrocytes as a potential mediator in the pathobiology of a variety of neurological disorders, including SCI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call