Abstract

As a highly perfused organ, the kidney is especially sensitive to ischemia and reperfusion. Ischemia-reperfusion (IR)-induced acute kidney injury (AKI) has a high incidence during the perioperative period in the clinic and is an important link in ischemic acute renal failure (IARF). Therefore, IR-induced AKI has important clinical significance and it is necessary to explore to develop drugs to prevent and alleviate IR-induced AKI. Curcumin [diferuloylmethane, 1,7-bis(4-hydroxy-3-methoxiphenyl)-1,6-heptadiene-3,5-dione)] is a polyphenol compound derived from Curcuma longa (turmeric) and was shown to have a renoprotective effect on ischemia-reperfusion injury (IRI) in a previous study. However, the specific mechanisms underlying the protective role of curcumin in IR-induced AKI are not completely understood. APPL1 is a protein coding gene that has been shown to be involved in the crosstalk between the adiponectin-signaling and insulin-signaling pathways. In the study, to investigate the molecular mechanisms of curcumin effects in kidney ischemia/reperfusion model, we observed the effect of curcumin in experimental models of IR-induced AKI and we found that curcumin treatment significantly increased the expression of APPL1 and inhibited the activation of Akt after IR treatment in the kidney. Our in vitro results showed that apoptosis of renal tubular epithelial cells was exacerbated with hypoxia-reoxygenation (HR) treatment compared to sham control cells. Curcumin significantly decreased the rate of apoptosis in renal tubular epithelial cells with HR treatment. Moreover, knockdown of APPL1 activated Akt and subsequently aggravated apoptosis in HR-treated renal tubular epithelial cells. Conversely, inhibition of Akt directly reversed the effects of APPL1 knockdown. In summary, our study demonstrated that curcumin mediated upregulation of APPL1 protects against ischemia reperfusion induced AKI by inhibiting Akt phosphorylation.

Highlights

  • Ischemia reperfusion (IR) is the leading cause of acute kidney injury (AKI), which is one of the most serious and common health problems in the clinic (Malek and Nematbakhsh, 2015)

  • To investigate the molecular mechanisms of curcumin effects in kidney ischemia/reperfusion model, we observed the effect of curcumin in experimental models of IR-induced AKI and we found that curcumin has a nephroprotective role that is accompanied by upregulation of APPL1 expression and inhibition of Akt activity in the kidney in response to ischemia-reperfusion injury (IRI)

  • We first determined if curcumin has nephroprotective action in a mouse model of kidney ischemia-reperfusion injury (IRI)

Read more

Summary

Introduction

Ischemia reperfusion (IR) is the leading cause of acute kidney injury (AKI), which is one of the most serious and common health problems in the clinic (Malek and Nematbakhsh, 2015). The prevention and treatment modalities of IR-induced AKI are neither ideal nor optimistic, as the specific molecular mechanism of IR-induced AKI remains elusive. Ample evidence has suggested that tubular necrosis/apoptosis is an important mechanism underlying ischemia-induced. In the pathogenesis of IR-induced AKI, inflammatory and immune cell infiltration as well as altered chemokine and cytokine production lead to the apoptosis and necrosis of renal tubular epithelial cells (Ornellas et al, 2017). A better understanding of the cellular and molecular mechanisms of apoptosis underlying IRinduced AKI is needed. Medications or treatment strategies that reduce apoptosis-related kidney damage are essential for developing effective therapies

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call