Abstract

2-Chloroacetaldehyde (CAA) induced a loss in hepatocyte viability in a concentration- and time-dependent manner. Three phases before cytotoxicity ensued could be distinguished. Glutathione (GSH) was depleted immediately upon addition of CAA but only partial depletion occurred with subtoxic CAA concentrations. GSH-depleted hepatocytes were much more susceptible to CAA toxicity, indicating that CAA was detoxified by GSH. The second phase of changes involved a steady decrease in protein thiol levels, mitochondrial respiration, transmembrane potential and ATP levels. The third phase involved lipid peroxidation which commenced at around 60 min with a CAA concentration that caused 50% cytotoxicity in 120 min. Addition of antioxidants (diphenylphenylenediamine, butylated hydroxyanisole) and iron chelators (desferoxamine) at 40 min prevented lipid peroxidation and delayed CAA-induced cytotoxicity without restoring protein thiols, hepatocyte respiration or preventing further ATP depletion. Addition of dithiothreitol at 40 min, however, restored protein thiols and hepatocyte respiration, and prevented further ATP depletion and cytotoxicity. CAA-induced hepatocyte cytotoxicity therefore involved reversible thiol protein adduct formation, mitochondrial toxicity and lipid peroxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.