Abstract

Hematogenous dissemination is important for infection by many bacterial pathogens, but is poorly understood because of the inability to directly observe this process in living hosts at the single cell level. All disseminating pathogens must tether to the host endothelium despite significant shear forces caused by blood flow. However, the molecules that mediate tethering interactions have not been identified for any bacterial pathogen except E. coli, which tethers to host cells via a specialized pillus structure that is not found in many pathogens. Furthermore, the mechanisms underlying tethering have never been examined in living hosts. We recently engineered a fluorescent strain of Borrelia burgdorferi, the Lyme disease pathogen, and visualized its dissemination from the microvasculature of living mice using intravital microscopy. We found that dissemination was a multistage process that included tethering, dragging, stationary adhesion and extravasation. In the study described here, we used quantitative real-time intravital microscopy to investigate the mechanistic features of the vascular interaction stage of B. burgdorferi dissemination. We found that tethering and dragging interactions were mechanistically distinct from stationary adhesion, and constituted the rate-limiting initiation step of microvascular interactions. Surprisingly, initiation was mediated by host Fn and GAGs, and the Fn- and GAG-interacting B. burgdorferi protein BBK32. Initiation was also strongly inhibited by the low molecular weight clinical heparin dalteparin. These findings indicate that the initiation of spirochete microvascular interactions is dependent on host ligands known to interact in vitro with numerous other bacterial pathogens. This conclusion raises the intriguing possibility that fibronectin and GAG interactions might be a general feature of hematogenous dissemination by other pathogens.

Highlights

  • Hematogenous dissemination of pathogenic organisms is an important feature of disease progression

  • Hematogenous dissemination is still poorly understood, in part because of an inability to directly observe this process in living hosts in real time and at the level of individual pathogens

  • In the study described here, we used quantitative real-time intravital microscopy to investigate the mechanistic features of the vascular interaction stage of B. burgdorferi dissemination in living hosts

Read more

Summary

Introduction

Hematogenous dissemination of pathogenic organisms is an important feature of disease progression. Dissemination is poorly understood, in large part because of the difficulty in studying this process directly in living organisms under the shear stress conditions that characterize the host vasculature. One such disseminating pathogen is the spirochete Borrelia burgdorferi, a primarily extracellular bacterium causing Lyme disease, referred to as Lyme borreliosis [1]. Until recently, spirochete-vascular interactions have never been directly examined in the host itself, or under the fluid shear forces that are present at dissemination sites [9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call