Abstract
The soil-borne pathogen Verticillium dahliae has a worldwide distribution and a plethora of hosts of agronomic value. Molecular analysis of virulence processes can identify targets for disease control. In this work, we compared the global gene transcription profile of random T-DNA insertion mutant strain D-10-8F, which exhibits reduced virulence and alterations in microsclerotium formation and polar growth, with that of the wild-type strain. Three genes identified as differentially expressed were selected for functional characterization. To produce deletion mutants, we developed an updated version of one-step construction of Agrobacterium-recombination-ready plasmids (OSCAR) that included the negative selection marker HSVtk (herpes simplex virus thymidine kinase gene) to prevent ectopic integration of the deletion constructs. Deletion of VdRGS1 (VDAG_00683), encoding a regulator of G protein signaling (RGS) protein and highly upregulated in the wild type versus D-10-8F, resulted in phenotypic alterations in development and virulence that were indistinguishable from those of the random T-DNA insertion mutant. In contrast, deletion of the other two genes selected, vrg1 (VDAG_07039) and vvs1 (VDAG_01858), showed that they do not play major roles in morphogenesis or virulence in V. dahliae. Taken together the results presented here on the transcriptomic analysis and phenotypic characterization of D-10-8F and ∆VdRGS1 strains provide evidence that variations in G protein signaling control the progression of the disease cycle in V. dahliae. We propose that G protein-mediated signals induce the expression of multiple virulence factors during biotrophic growth, whereas massive production of microsclerotia at late stages of infection requires repression of G protein signaling via upregulation of VdRGS1 activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.