Abstract
Channelrhodopsin (ChR) and heliorhodopsin (HeR) are microbial rhodopsins with similar structures but different circular dichroism (CD) spectra: ChR shows biphasic negative and positive bands, whereas HeR shows a single positive band. We explored the physicochemical factors underlying these differences through computational methods. Using the exciton model based on first-principles computations, we obtained the CD spectra of ChR and HeR. The obtained spectra indicate that the protein dimer structures and the quantum mechanical treatment of the retinal chromophore and its interacting amino acids are crucial for accurately reproducing the experimental spectra. Further calculations revealed that the sign of the excitonic coupling was opposite between the ChR and HeR dimers, which was attributed to the contrasting second term of the orientation factor between the two retinal chromophores. These findings demonstrate that slight variations in the intermolecular orientation of the two chromophores can result in significant differences in the CD spectral shape.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.