Abstract
Recently, we reported on a potent benzimidazole derivative (227G) that inhibits the growth of the bovine viral diarrhea virus (BVDV) in cell-based and enzyme assays at nanomolar concentrations. The target of 227G is the viral RNA-dependent RNA polymerase (RdRp), and the I261M mutation located in motif I of the RdRp finger domain was found to induce drug resistance. Here we propose a molecular mechanism for the retained functionality of the enzyme in the presence of the inhibitor, on the basis of a thorough computational study of the apo and holo forms of the BVDV RdRp either in the wild type (wt) or in the form carrying the I261M mutation. Our study shows that although the mutation affects to some extent the structure of the apoenzyme, the functional dynamics of the protein appear to be largely maintained, which is consistent with the retained functionality of this natural mutant. Despite the binding site of 227G not collapsing or undergoing drastic structural changes upon introduction of the I261M substitution, these alterations reflect crucially on the binding mode of 227G, which is significantly different from that found in wt RdRp. In particular, while in the wt system the four loops lining the template entrance site embrace 227G and close the template passageway, in the I261M variant the template entrance is only marginally occluded, allowing in principle the translocation of the template to the interior of the enzyme. In addition, the mutated enzyme in the presence of 227G retains several characteristics of the wt apoprotein. Our work provides an original molecular picture of a resistance mechanism that is consistent with published experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.