Abstract

BackgroundOil from seeds of the tung tree (Vernicia fordii) has unique drying properties that are industrially important. We found that the extended oil accumulation period was related to the high seed oil content at maturity among tung tree population. In order to understand the molecular mechanism underlying the high oil content in tung tree seed, Tree H and L were adopted for the further investigation, with seed oil content of about 70 and 45%, respectively. We compared the transcriptomic changes of seed at various times during oil accumulation between the two trees.ResultsTranscriptomes analysis revealed that many genes involved in glycolysis, fatty acid synthesis, and tri-acyl glyceride assembly still kept high expression in the late period of seed oil accumulation for Tree H only. Many genes in fatty acid degradation pathway were largely up regulated in the late period of seed oil accumulation for Tree L only. Four transcription factors related to fatty acid biosynthesis had different expression pattern in the seed oil accumulation period for the two trees. WRI1 was down regulated and kept the low expression in the late period of seed oil accumulation for the two trees. PII, LEC1 and LEC1-LIKE extended the high expression in the late period of seed oil accumulation in Tree H only.ConclusionsThe continued accumulation of oil in the late period of seed oil accumulation for Tree H was associated with relatively high expression of the relevant genes in glycolysis, fatty acid synthesis and tri-acyl glyceride assembly. PII, LEC1, and LEC1-LIKE rather than WRI1 should play an important role in the oil continual accumulation in the late period of seed oil accumulation in Tree H. This study provides novel insight into the variation in seed oil content and informs plant breeding strategies to maximize oil yield.

Highlights

  • Oil from seeds of the tung tree (Vernicia fordii) has unique drying properties that are industrially important

  • Time course of oil accumulation in twelve tung trees We defined the period with the apparent increase for oil content in tung tree seed as rapid oil accumulation

  • We noted that trees with seeds that were about 70% oil content in the mature endosperm had a comparably longer rapid oil accumulation period of 5 to 7 weeks (Additional file 1: Figure S1c), whereas trees with seeds that had about 50% oil content had a shorter rapid oil accumulation period of 2 to 4 weeks (Additional file 1: Figure S1a)

Read more

Summary

Introduction

Oil from seeds of the tung tree (Vernicia fordii) has unique drying properties that are industrially important. We found that the extended oil accumulation period was related to the high seed oil content at maturity among tung tree population. One important consideration in the exploitation of seed oil for industrial purposes is the oil content, defined as the percentage of oil weight in the total weight of dry seed. Seed oil content can be improved by altering the expression levels of individual genes that encode enzymes involved in oil metabolism [1,2,3,4]. Three TFs, LEC1 (leafy-cotyledon protein 1), LEC1-Like (related to LEC1) and PII (P-II homolog) regulate fatty acid synthesis [8, 9].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call