Abstract
In order to determine the molecular origin of the differential photocurrent from bacteriorhodopsin (bR), the photoelectric response of bR film deposited on an indium tin oxide (ITO) conductive glass electrode under CW excitation is compared with that under pulsed laser excitation at different pH and with opposite membrane orientation with respect to the ITO electrode surface. The characteristics (sign and magnitude) of the dominant component of the differential photocurrent (appearing on the millisecond time scale) are found to correlate with the process of proton release into, or uptake from, the aqueous solution during the photocycle under different experimental conditions. This suggests that the differential current results mainly from the change in the H{sup +} concentration at the bR-ITO electrode interface. 27 refs., 2 figs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.