Abstract

Spider major ampullate (drag-line) silk is an extracellular fibrous protein which has impressive characteristics of strength and elasticity. This silk has been hypothesized to predominantly consist of a single protein, containing regions of antiparallel β-sheets which are interspersed with amorphous segments responsible for its elastic properties. A rubber-like mechanism has been suggested to account for this elasticity, but the specific molecular mechanism is unknown. Using Fourier transform infrared spectroscopy (FTIR) we found evidence of either helix formation or reorientation of preexisting helices when axial tension is applied to the spider silk fiber. CD studies of a peptide derived from the silk gene repeat sequence show that it can form β-sheets at high temperatures while α-helices are induced in 2,2,2-trifluoroethanol. These results suggest a possible molecular mechanism for the elasticity of spider silk fibers. It is proposed that the elastic process involves the formation and disruption of α-helical Ala-rich regions which are interspersed among stable β-sheet domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.