Abstract

Although carbendazim (MBC) and other benzimidazole fungicides have effectively controlled bakanae disease of rice (which is caused by Fusarium fujikuroi, F. proliferatum, and F. verticillioides) in the past, MBC resistance has become common. Previous research has shown that MBC resistance results from a mutation in the β1 -tubulin (β1 tub) gene in F. verticillioides. However, MBC resistance in F. fujikuroi, a predominant species in China, does not result from a mutation in the β1 tub. The molecular mechanism of F. fujikuroi resistance against benzimidazole fungicides is poorly understood. In this study, we determined that although β1 tub and β2 -tubulin (β2 tub) in F. fujikuroi have high homology with β1 tub and β2 tub in F. verticillioides, MBC resistance in F. fujikuroi results from mutations in β2 tub [GAG(Glu)→GTG(Val) at codon 198, TTC(Phe)→TAC(Tyr) at codon 200, and GGC(Gly)→GGT(Gly) at codon 235] but not in β1 tub. Δβ2 tub (β2 tub deletion) mutants were highly sensitive to MBC, produced fewer conidia and were less virulent than parental strains. Complementation of the Δβ2 tub mutants with a copy of the whole β2 tub locus from their parental strains restored the level of MBC resistance (or sensitivity) to that of the parental strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.