Abstract

SummaryElectrical synapses are neuronal gap junctions that mediate fast transmission in many neural circuits [1–5]. The structural proteins of gap junctions are the products of two multigene families. Connexins are unique to chordates [3–5]; innexins/pannexins encode gap-junction proteins in prechordates and chordates [6–10]. A concentric array of six protein subunits constitutes a hemichannel; electrical synapses result from the docking of hemichannels in pre- and postsynaptic neurons. Some electrical synapses are bidirectional; others are rectifying junctions that preferentially transmit depolarizing current anterogradely [11, 12]. The phenomenon of rectification was first described five decades ago [1], but the molecular mechanism has not been elucidated. Here, we demonstrate that putative rectifying electrical synapses in the Drosophila Giant Fiber System [13] are assembled from two products of the innexin gene shaking-B. Shaking-B(Neural+16) [14] is required presynaptically in the Giant Fiber to couple this cell to its postsynaptic targets that express Shaking-B(Lethal) [15]. When expressed in vitro in neighboring cells, Shaking-B(Neural+16) and Shaking-B(Lethal) form heterotypic channels that are asymmetrically gated by voltage and exhibit classical rectification. These data provide the most definitive evidence to date that rectification is achieved by differential regulation of the pre- and postsynaptic elements of structurally asymmetric junctions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.