Abstract
Proteins are marginally stable soft-matter entities that can be disrupted using a variety of perturbative stresses, including thermal, chemical, or mechanical ones. Fluid under extreme flow conditions is a possible route to probe the weakness of biomolecules and collect information on the molecular cohesive interactions that secure their stability. Moreover, in many cases, physiological flow triggers the functional response of specialized proteins as occurring in blood coagulation or cell adhesion. We deploy the Lattice Boltzmann molecular dynamics technique based on the coarse-grained model for protein OPEP to study the mechanism of protein unfolding under Couette flow. Our simulations provide a clear view of how structural elements of the proteins are affected by shear, and for the simple study case, the β-hairpin, we exploited the analogy to pulling experiments to quantify the mechanical forces acting on the protein under shear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.