Abstract

To investigate the role and mechanism of action of miR-153 in the migration, invasion, and epithelial-mesenchymal transition (EMT) of breast cancer cells. Quantitative real time polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-153 and transforming growth factor beta receptor 2 (TGFBR2) in tissue specimens and cells. miR-153 overexpression in breast cancer cells was achieved by miR-153 mimic transfection. Mobility and invasiveness of breast cancer cells were evaluated by transwell assay. EMT was evaluated by Western blot detecting the protein level of E-cadherin and Vimentin. Interaction of miR-153 and 3'-untranslated region (UTR) of TGFBR2 messenger RNA (mRNA) was investigated by luciferase reporter assay. The expression of miR-153 in breast cancer tissue specimens and MDA-MB-231 cells was significantly lower than that in nonmalignant counterparts, inversely correlating with that of TGFBR2 mRNA. Transfection with miR-153 mimic significantly increased miR-153 level in MDA-MB-231 cells while inhibiting its migration, invasion, and EMT in vitro, which could be mimicked by TGFBR2 knockdown. Luciferase reporter assay confirmed two targets of miR-153 on the 3'-UTR of TGFBR2 mRNA. Restoring TGFBR2 protein level by transient overexpression largely rescued migration, invasion, and EMT of MDA-MB-231 cells that were repressed by miR-153 mimic transfection. miR-153 inhibits breast cancer cell migration, invasion, and EMT by targeting TGFBR2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.