Abstract

The irreversible dodecamerization of native Dps trimers from Mycobacterium smegmatis, in vitro, is known to be directly associated with the bimodal function of this protein. Hence it is important to explore this pathway at the molecular level. Two types of trimers, Trimer A (tA) and Trimer B (tB), can be derived from the dodecamer due to the inherent 3-fold symmetry of the spherical crystal structure. These derived trimers were expressed as protein structure graphs (PSGs) using the computed interaction strength among the residues. Interface clusters which were identified from PSGs allowed us to convincingly predict E146 and F47 for further mutation studies. Various single and double mutants were constructed and characterized. We were finally able to generate a single mutant F47E impaired in dodecamerization and a double mutant E146AF47E as native monomer in solution. These two observed results suggest that the two trimers are important for dodecamerization and that the residues selected are important for the structural stability of the protein in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.