Abstract

The IK channel, a potassium ion channel regulated by calcium ions and voltages in a bidirectional manner, has been implicated in a range of diseases. However, there are currently few compounds available that can target the IK channel with high potency and specificity. Hainantoxin-I (HNTX-I) is the first peptide activator of IK channel discovered so far, but its activity is not ideal, and the underlying mechanism interaction between HNTX-I toxin and IK channel remains unclear. Thus, our study aimed to enhance the potency of IK channel activating peptides derived from HNTX-I and elucidate the molecular mechanism underlying the interaction between HNTX-I and the IK channel. By employing virtual alanine scanning mutagenesis, we generated 11 HNTX-I mutants using site-directed mutagenesis to pinpoint specific residues crucial for the HNTX-I and IK channel interaction. Subsequently, we identified key residues on the IK channel that are involved in the interaction with HNTX-I. Additionally, molecular docking was employed to guide the molecular engineering process and clarify the binding interface between HNTX-I and the IK channel. Our results demonstrate that HNTX-I primarily acts on the IK channel via the N-terminal amino acid, and its interaction with the IK channel is mediated by electrostatic and hydrophobic interactions, specifically the amino acid residues at positions 1, 3, 5, and 7 on HNTX-I. This study provides valuable insights into the peptide toxins that may serve as potential templates for the development of activators with enhanced potency and selectivity for the IK channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call