Abstract
Heterogeneous and supramolecular catalysis are fundamental processes in chemistry. To understand the synergistic role between heterogeneous and supramolecular catalysis, the catalytic mechanism of cucurbituril solid for epoxide alcoholysis was investigated by performing density functional theory (DFT) calculations. The results reveal that styrene oxide (StyOx) ethanolysis has an inherent regioselectivity, which results from different groups linked to the epoxy group. The hydronium ion can catalyze the ring-opening of StyOx ethanolysis and lead to the formation of a planar carbenium ion. StyOx can also be hydrolyzed via the homogenous catalysis of acid to produce 1, 2-diol. Cucurbituril solid can catalyze epoxide alcoholysis because of its acidic property. Its unique cavity can lead to a favorable frontside-attack of the alcohol on the carbenium ion. The product from the heterogeneous catalysis of cucurbituril solid is pure β-alkoxy alcohol. The results are important to understand heterogeneous and supramolecular catalysis and the design of new and effective supramolecular catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.