Abstract

Release of neurotransmitters from synaptic vesicles begins with a narrow fusion pore, the structure of which remains unresolved. To obtain a structural model of the fusion pore, we performed coarse-grained molecular dynamics simulations of fusion between a nanodisc and a planar bilayer bridged by four partially unzipped SNARE complexes. The simulations revealed that zipping of SNARE complexes pulls the polar C-terminal residues of the synaptobrevin 2 and syntaxin 1A transmembrane domains to form a hydrophilic core between the two distal leaflets, inducing fusion pore formation. The estimated conductances of these fusion pores are in good agreement with experimental values. Two SNARE protein mutants inhibiting fusion experimentally produced no fusion pore formation. In simulations in which the nanodisc was replaced by a 40-nm vesicle, an extended hemifusion diaphragm formed but a fusion pore did not, indicating that restricted SNARE mobility is required for rapid fusion pore formation. Accordingly, rapid fusion pore formation also occurred in the 40-nm vesicle system when SNARE mobility was restricted by external forces. Removal of the restriction is required for fusion pore expansion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.