Abstract

Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety's anomeric configuration. However, the catalytic mechanism for retaining GTs remains a subject of controversy. In this study, we employ MD and QM/MM metadynamics to investigate the double-displacement catalytic mechanism of the retaining β-Kdo transferase WbbB. Our findings demonstrate that the nucleophile Asp232 initiates the reaction by attacking the sugar ring containing a carboxylate at the anomeric position, forming a covalent adduct. Subsequently, the adduct undergoes a rotational rearrangement, ensuring proper orientation of the anomeric carbon for the acceptor substrate. In the second step, Glu158 acts as the catalytic base to abstract the proton of the acceptor substrate to complete the transglycosylation reaction. Notably, His265 does not function as the anticipated catalytic acid; instead, it stabilizes the phosphate group through H-bonding interactions. Our simulations support the double-displacement mechanism implicated from the crystallographic studies of WbbB. This mechanism deviates from the common SNi-type and retaining glycoside hydrolase mechanisms, thereby expanding our understanding of GT catalytic mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.