Abstract

Cardiotoxin isolated from Naja mossambica mossambica selectively deactivates the sodium-potassium activated adenosine triphosphatase of axonal membranes. Tetrodotoxin binding and acetylcholinesterase activities are unaffected by cardiotoxin treatment. The details of association of cardiotoxin with the axonal membrane were studied by following the deactivation of the sodium-potassium activated adenosine triphosphatase and by direct binding measurements with a tritiated derivative of the native cardiotoxin. The maximal binding capacity of the membrane is 42-50 nmol of cardiotoxin/mg of membrane protein. The high amount of binding suggests association of the toxin with the lipid phase of the membrane. It has been shown that cardiotoxin first associates rapidly and reversibly to membrane lipids, then, in a second step, it induces a rearrangement of the membrane structure which produces and irreversible deactivation of the sodium-potassium activated adenosine triphosphatase. Solubilization of the membrane-bound ATPase with Lubrol WX gives an active enzyme species that is resistant to cardiotoxin-induced deactivation. Cardiotoxin binding to the membrane is prevented by high concentrations of Ca 2+ and dibucaine. Although cardiotoxins and neurotoxins of cobra venom have large sequence homologies, their mode of action on membranes is very different. The cardiotoxin seems to bind to the lipid phase of the axonal membrane and inhibits the sodium-potassium activated adenosine triphosphatase, whereas the neurotoxin associates with a protein receptor in the post-synaptic membrane and blocks acetylcholine transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.