Abstract

Congestive heart failure is a major issues for cardiologists and to fully understand heart failure, it is important to understand the mechanism of the development of cardiac hypertrophy. Hemodynamic overload, namely mechanical stress, is a major cause of cardiac hypertrophy and to dissect the signaling pathways from mechanical stress to cardiac hypertrophy, an in-vitro device by which mechanical stress can be imposed on cardiac myocytes of neonatal rats cultured in serum-free conditions has been developed. Passively stretching cardiac myocytes cultured on silicone membranes induced various hypertrophic responses, such as activation of the phosphorylation cascades of many protein kinases, expression of specific genes and an increase in protein synthesis. During this process, secretion and production of vasoactive peptides, such as angiotensin II and endothelin-1, were increased and they played critical roles in the induction of these hypertrophic responses. Candidates for the 'mechanoreceptor' that receives the mechanical stress and converts it into intracellular biochemical signals have been recently demonstrated. Gene therapy and cell transplantation are hopeful strategies for the treatment of heart failure and require an understanding of how normal cardiac myocytes are differentiated. A key gene that plays a critical role in cardiac development has been isolated. The cardiac homeobox-containing gene Csx is expressed in the heart and the heart progenitor cells from the very early developmental stage, and targeted disruption of the murine Csx results in embryonic lethality because of the abnormal looping morphogenesis of the primary heart tube. With a cardiac zinc finger protein GATA4, Csx induces cardiomyocyte differentiation of teratocarcinoma cells as well as upregulation of cardiac genes. Mutations of human CSX cause various congenital heart diseases including atrial septal defect, ventricular septal defect, tricuspid valve abnormalities and atrioventricular block.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call