Abstract

The mechanisms leading to aggregation of the crystallin proteins of the eye lens remain largely unknown. We use atomistic multiscale molecular simulations to model the solution-state conformational dynamics of γD-crystallin and its cataract-related W42R variant at both infinite dilution and physiologically relevant concentrations. We find that the W42R variant assumes a distinct conformation in solution that leaves the Greek key domains of the native fold largely unaltered but lacks the hydrophobic interdomain interface that is key to the stability of wild-type γD-crystallin. At physiologically relevant concentrations, exposed hydrophobic regions in this alternative conformation become primary sites for enhanced interprotein interactions leading to large-scale aggregation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.