Abstract

We demonstrate that 85 N-terminal amino acids of the alpha1(I) chain participate in a highly stable folding domain, acting as the stabilizing anchor for the amino end of the type I collagen triple helix. This anchor region is bordered by a microunfolding region, 15 amino acids in each chain, which include no proline or hydroxyproline residues and contain a chymotrypsin cleavage site. Glycine substitutions and amino acid deletions within the N-anchor domain induce its reversible unfolding above 34 degrees C. The overall triple helix denaturation temperature is reduced by 5-6 degrees C, similar to complete N-anchor removal. N-propeptide partially restores the stability of mutant procollagen but not sufficiently to prevent N-anchor unfolding and a conformational change at the N-propeptide cleavage site. The ensuing failure of N-proteinase to cleave at the misfolded site leads to incorporation of pN-collagen into fibrils. Similar, but weaker, effects are caused by G88E substitution in the adjacent triplet, which appears to alter N-anchor structure as well. As in Ehlers-Danlos syndrome (EDS) VIIA/B, fibrils containing pN-collagen are thinner and weaker causing EDS-like laxity of large and small joints and paraspinal ligaments. However, distinct structural consequences of N-anchor destabilization result in a distinct alpha1(I)-osteogenesis imperfecta (OI)/EDS phenotype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.