Abstract

A critical issue in bioelectrochemical applications, that use electrodes modified by nanomaterials, like enzyme sensor modified by Single Wall Carbon Nanotubes (SWCNTs), is to ensure high activity of the active center of an immobilized enzyme protein. Since Flavin Adenine Dinucleotide (FAD) along with other amino residues, including His559, Glu412 and His516, constitute the active center of the catalytic site conformation of which could determine the activity of enzyme, it is important to understand the molecular mechanism of their mobility and the potential impact on the catalytic activity while GOx is immobilized on SWCNTs. However, this dynamic mechanism still remains blurry at the atomic level due to the active center being embedded in the apo-GOx and the limitations of appropriate experimental methods. The molecular dynamics (MD) simulation, as a successful approach for exploring some interaction details between protein and nanomaterials, was performed to investigate the mobility mechanism of the active center and the consequence for the possible change of catalytic activity in this study. The trajectory and bond distance clearly indicate that the adsorption of GOx onto SWCNTs with different orientations bring observable different interaction properties in the conformational mobility in active center. These results would help us understand some substantial factors for the activity of biomacromolecule while immobilized on nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.