Abstract

Molecular mechanics techniques using a modified version of the program MM2(87) were used to analyze the ruffling of metalloporphyrins as a function of metal ion size, orientation of axial ligands, and orientation of substituents on the porphyrin periphery. The structures chosen for the parametrization, [P(TPP)(OH) 2 ] + , the planar and ruffled forms of low-spin (S=0) [Ni(OEP)], (S=1) (Fe(TPP)], [Zn(TPP)], and (Pb(TPrP)], contain metal ions of very different sizes and hence extents of porphyrin core ruffling

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.