Abstract

Two myosin isoforms are expressed in myocardium, alphaalpha-homodimers (V(1)) and betabeta-homodimers (V(3)). V(1) exhibits higher velocities and myofibrillar ATPase activities compared with V(3). We also observed this for cardiac myosin from normal (V(1)) and propylthiouracil-treated (V(3)) mice. Actin velocity in a motility assay (V(actin)) over V(1) myosin was twice that of V(3) as was the myofibrillar ATPase. Myosin's average force (F(avg)) was similar for V(1) and V(3). Comparing V(actin) and F(avg) across species for both V(1) and V(3), our laboratory showed previously (VanBuren P, Harris DE, Alpert NR, and Warshaw DM. Circ Res 77: 439-444, 1995) that mouse V(1) has greater V(actin) and F(avg) compared with rabbit V(1). Mouse V(3) V(actin) was twice that of rabbit V(actin). To understand myosin's molecular structure and function, we compared alpha- and beta-cardiac myosin sequences from rodents and rabbits. The rabbit alpha- and beta-cardiac myosin differed by eight and four amino acids, respectively, compared with rodents. These residues are localized to both the motor domain and the rod. These differences in sequence and mechanical performance may be an evolutionary attempt to match a myosin's mechanical behavior to the heart's power requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.