Abstract
To understand the molecular basis of early orthodontic tooth movement by looking at the expression of KI-67, runt-related transcription factor 2 (Runx2), and tumor necrosis factor ligand superfamily member 11 (RANKL) proteins. We employed a rat model of early orthodontic tooth movement using a split-mouth design (where contralateral side serves as a control) and performed immunohistochemical staining to map the spatial expression patterns of three proteins at 3 and 24 hours after appliance insertion. We observed increased expression of KI-67, a proliferation marker, and RANKL, a molecule associated with osteoclastic differentiation, in the compression sites of the periodontal ligament subjected to 3 hours of force. In contrast, there was increased expression of KI-67 and Runx2, a marker of osteoblast precursors, in tension areas after 24 hours of force. Decreased KI-67 expression in the mesial and distal regions of the periodontal ligament was observed at the midpoint of the tooth root. The early RANKL expression indicates that at this early stage cells are involved in osteoclast precursor signaling. Also, decreased KI-67 expression found near the midpoint of the tooth root is believed to represent the center of rotation, providing a molecular means of visualizing mechanical loading patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.