Abstract

The rose is one of the most important ornamental woody plants because of its extensive use and high economic value. Herein, we sequenced a complete chloroplast genome of the miniature rose variety Rosa ‘Margo Koster’ and performed comparative analyses with sequences previously published for other species in the Rosaceae family. The chloroplast genome of Rosa ‘Margo Koster’, with a size of 157,395 bp, has a circular quadripartite structure typical of angiosperm chloroplast genomes and contains a total of 81 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Conjunction regions in the chloroplast genome of Rosa ‘Margo Koster’ were verified and manually corrected by Sanger sequencing. Comparative genome analysis showed that the IR contraction and expansion events resulted in rps19 and ycf1 pseudogenes. The phylogenetic analysis within the Rosa genus showed that Rosa ‘Margo Koster’ is closer to Rosa odorata than to other Rosa species. Additionally, we identified and screened highly divergent sequences and cpSSRs and compared their power to discriminate rose varieties by Sanger sequencing and capillary electrophoresis. The results showed that 15 cpSSRs are polymorphic, but their discriminating power is only moderate among a set of rose varieties. However, more than 150 single nucleotide variations (SNVs) were discovered in the flanking region of cpSSRs, and the results indicated that these SNVs have a higher divergence and stronger power for profiling rose varieties. These findings suggest that nucleotide mutations in the chloroplast genome may be an effective and powerful tool for rose variety discrimination and DNA profiling. These molecular markers in the chloroplast genome sequence of Rosa spp. will facilitate population and phylogenetic studies and other related studies of this species.

Highlights

  • The rose is one of the most important ornamental woody plants because of its extensive use and high economic value

  • We compared these sequences to the assembled genome and found two nucleotide mismatches that were corrected before submission to the GenBank database

  • We constructed cp genomes for a rose variety (Rosa ‘Margo Koster’) using next-generation sequencing on the Illumina HiSeq2500 platform

Read more

Summary

Introduction

The rose is one of the most important ornamental woody plants because of its extensive use and high economic value. These findings suggest that nucleotide mutations in the chloroplast genome may be an effective and powerful tool for rose variety discrimination and DNA profiling These molecular markers in the chloroplast genome sequence of Rosa spp. will facilitate population and phylogenetic studies and other related studies of this species. Previous studies have reported that analyses of molecular markers from the nuclear genome are powerful and effective approaches for discriminating rose varieties and establishing DNA profiles. A complete cp genome of Rosa ‘Margo Koster’ and characterizations of SSRs and single nucleotide variations (SNVs) were screened and verified by capillary electrophoresis (CE) and Sanger sequencing, and their discriminating power was calculated and compared in a set of rose varieties

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call