Abstract

In rice, drought stress at reproductive stage drastically reduces yield, which in turn hampers farmer's efforts towards crop production. The majority of the rice varieties have resistance genes against several abiotic and biotic stresses. Therefore, the traditional landraces were studied to identify QTLs/candidate genes associated with drought tolerance. A high-density SNP-based genetic map was constructed using a Genotyping-by-sequencing (GBS) approach. The recombinant inbred lines (RILs) derived from crossing 'Banglami × Ranjit' were used for QTL analysis. A total map length of 1306.424cM was constructed, which had an average inter-marker distance of 0.281cM. The phenotypic evaluation of F6 and F7 RILs were performed under drought stress and control conditions. A total of 42 QTLs were identified under drought stress and control conditions for yield component traits explaining 1.95-13.36% of the total phenotypic variance (PVE). Among these, 19 QTLs were identified under drought stress conditions, whereas 23 QTLs were located under control conditions. A total of 4 QTLs explained a PVE ≥ 10% which are considered as the major QTLs. Moreover, bioinformatics analysis revealed the presence of 6 candidate genes, which showed differential expression under drought and control conditions. These QTLs/genes may be deployed for marker-assisted pyramiding to improve drought tolerance in the existing rice varieties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call