Abstract
Molecular machines (MM) are essential components of living cells. They conduct mechanical work, transport materials into and out of cells, assist in processing enzymatic reactions, and more. Their operations are frequently combined with significant conformational transitions. Computational studies of these conformational transitions and their coupling to molecular functions are discussed. It is argued that coarse descriptions of these molecules which are based on mass density and shape provide useful information on directions of action. It is further argued that MM are likely to have well focused and narrow reaction pathways. The proposal for such pathways is supported by evolutionary analyses of homologous machines. Finally, these observations are used to build atomically detailed models of these systems that are making the link from structure to functions (kinetics and thermodynamics). For that purpose enhanced sampling techniques are required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.