Abstract

Plant adaptation, growth and development rely on the integration of many environmental and endogenous signals that collectively determine the overall plant phenotypic plasticity. Plant signaling molecules, also known as phytohormones, are fundamental to this process. These molecules act at low concentrations and regulate multiple aspects of plant fitness and development via complex signaling networks. By its nature, phytohormone research lies at the interface between chemistry and biology. Classically, the scientific community has always used synthetic phytohormones and analogs to study hormone functions and responses. However, recent advances in synthetic and combinational chemistry, have allowed a new field, plant chemical biology, to emerge and this has provided a powerful tool with which to study phytohormone function. Plant chemical biology is helping to address some of the most enduring questions in phytohormone research such as: Are there still undiscovered plant hormones? How can we identify novel signaling molecules? How can plants activate specific hormone responses in a tissue-specific manner? How can we modulate hormone responses in one developmental context without inducing detrimental effects on other processes? The chemical genomics approaches rely on the identification of small molecules modulating different biological processes and have recently identified active forms of plant hormones and molecules regulating many aspects of hormone synthesis, transport and response. We envision that the field of chemical genomics will continue to provide novel molecules able to elucidate specific aspects of hormone-mediated mechanisms. In addition, compounds blocking specific responses could uncover how complex biological responses are regulated. As we gain information about such compounds we can design small alterations to the chemical structure to further alter specificity, enhance affinity or modulate the activity of these compounds.

Highlights

  • FROM PHENOTYPES TO MOLECULES: EARLY CHEMICAL GENOMICS APPROACHESPlant growth, development and adaptation to the environment require the integration of many environmental and endogenous signals that, together with the intrinsic genetic program, determine overall plant responses

  • Development and adaptation to the environment require the integration of many environmental and endogenous signals that, together with the intrinsic genetic program, determine overall plant responses. In this context, signaling molecules and growth regulators, collectively known as phytohormones, act as central hubs for the integration of complex environmental and cellular signals. Phytohormones such as auxins, cytokinins (CK), gibberellins (GAs), abscisic acid (ABA), ethylene (ET), brassinosteroids (BRs) salicylic acid (SA), jasmonates (JAs), and strigolactones act at low concentrations and, either alone or in combination with other hormones, regulate multiple aspects of plant development, defense and adaptation

  • Little effect on JA biosynthesis Biotin-tagged photoaffinity labeled molecules that promote COI1/JAZ interaction Strong inhibitor of ALLENE OXYDE SYNTHASE (AOS) activity Inhibits the last step of Jasmonic acid-isoleucine (JA-Ile) biosynthesis Endogenous jasmonate recognized by the receptor

Read more

Summary

Introduction

FROM PHENOTYPES TO MOLECULES: EARLY CHEMICAL GENOMICS APPROACHESPlant growth, development and adaptation to the environment require the integration of many environmental and endogenous signals that, together with the intrinsic genetic program, determine overall plant responses. Little effect on JA biosynthesis Biotin-tagged photoaffinity labeled molecules that promote COI1/JAZ interaction Strong inhibitor of AOS activity Inhibits the last step of JA-Ile biosynthesis Endogenous jasmonate recognized by the receptor

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.