Abstract

AbstractEdge Clouds 1 and 2 (EC1 and EC2) are large molecular clouds with the largest galactocentric distances known to exist in the Milky Way. We present observations of these clouds and use them to determine physical characteristics. For EC2 we calculate a gas temperature of 20 K and a density ofn(H2) ~ 104cm−3. Based on our CO maps, we estimate the mass of EC2 at around 104M⊙, and continuum observations suggest a dust-to-gas mass ratio as low as 0.001. Chemical models have been developed to reproduce the abundances in EC2 and they indicate that: heavy element abundances may be reduced by a factor of five relative to the solar neighbourhood (similar to dwarf irregular galaxies and damped Lyman alpha systems); very low extinction (AV< 4 mag) due to a very low dust-to-gas ratio; an enhanced cosmic ray ionisation rate; and a higher UV field compared to local interstellar values. The reduced abundances may be attributed to the low level of star formation in this region and are probably also related to the continuing infall of low metallicity halo gas since the Milky Way formed. We find that shocks from an old supernova remnant may have determined the morphology and dynamics of EC2, including the recently discovered star clusters embedded in the northern and southern cores. However, compared to EC2, EC1 appears to be a chemically less varied environment. The apparent molecule-poor nature of EC1 demonstrates the characteristics of clouds that have not had the benefit of SN shocks to stimulate an active cloud chemistry and star formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call