Abstract

Observations of the dust emission using millimetre/submillimetre bolometer arrays can be contaminated by molecular line flux, such as flux from 12CO. As the brightest molecular line in the submillimetre, it is important to quantify the contribution of CO flux to the dust continuum bands. Conversion factors were used to convert molecular line integrated intensities to flux detected by bolometer arrays in mJy per beam. These factors were calculated for 12CO line integrated intensities to the SCUBA-2 850 {\mu}m and 450 {\mu}m bands. The conversion factors were then applied to HARP 12CO 3-2 maps of NGC 1333 in the Perseus complex and NGC 2071 and NGC 2024 in the Orion B molecular cloud complex to quantify the respective 12CO flux contribution to the 850 {\mu}m dust continuum emission. Sources with high molecular line contamination were analysed in further detail for molecular outflows and heating by nearby stars to determine the cause of the 12CO contribution. The majority of sources had a 12CO 3-2 flux contribution under 20 per cent. However, in regions of molecular outflows, the 12CO can dominate the source dust continuum (up to 79 per cent contamination) with 12CO fluxes reaching \sim 68 mJy per beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.