Abstract

The modification of metallic Zn anode contributes to solving the cycling issue of Zn-ion batteries (ZIBs) by restraining the dendrite growth and side reactions. In this regard, modulating (002) Zn is an effective way to prolong the lifespan of ZIBs with a parallel arrangement of Zn deposition. Herein, the authors propose to add trace amounts of Zn(BF4 )2 additive in 3M ZnSO4 to promote in-plane Zn deposition by forming a BF4 - -[Zn(H2 O)6 ]2+ -[Zn(BF4 )3 ]- transfer process and specifically functioning on (002) facets. In this way, the optimized electrolyte highly boosts the cycling stability of Zn anodes with a long lifespan at 34.2%Zn utilization (500h/10mA cm-2 ) and 51.3%Zn utilization (360h/10mA cm-2 ; 834h/1mA cm-2 ). Moreover, the electroplated Zn on Cu substrate exhibits a competitive cumulative plating capacity (CPC) of 2.87 Ah cm-2 under harsh conditions. The assembled Zn|(NH4 )2 V6 O16 ·3H2 O full cells with a high cathode loading of 29.12mg cm-2 also realizes almost no capacity degradation even after 2000 cycles at 2 A g-1 . With this cost-effective strategy, it is promising to push the development of aqueous ZIBs as well as provide inspiration for metal anode optimization in other energy storage systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.