Abstract

The nature of interaction between coal surface and reagent affects fine coal flotation yield. Hence, it is crucial to understand the nature of coal surface to improve flotation yield. Therefore, determination of coal surface at the molecular level is important to optimize the flotation performance. But coal is a complex material, and its molecular presentations depend highly on its geographical origin. In this work, various experimental techniques such as ultimate analysis, proximate analysis, TGA, FTIR and solid state 13C NMR were used to characterize the structure of low-rank Indian coal. The data extracted from these experiments were then used to develop molecular level presentation of coal using machine learning (ML) and DFT. Five stable molecular level structures were proposed for this Indian coal. DFT calculated FTIR spectra matches reasonably with the experimental FTIR data. Finally, a 3D model of the coal sample was developed, and reactive force field (ReaxFF) molecular dynamics simulations were performed for thermal decomposition analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.