Abstract

In this work, a molecular-level kinetic model of ethane/propane steam cracking was developed by using a hybrid structural unit-bond electron matrix framework. The molecular-level simulation was conducted, creating a detailed feedstock composition, formulating the reaction rules, and automating the generation and visualization of reaction networks. Ordinary differential equations were automatically generated based on the Arrhenius equation, while the kinetic parameters were reduced via linear free energy relations (LFERs). Furthermore, proper mathematical models for mass transfer, heat transfer, and momentum transfer within the cracking furnace were integrated into the molecular-level kinetic model, enabling the simultaneous calculation of the transfer process and chemical kinetics in steam cracking. The model was validated by its precise prediction of product yields, outlet pressure, and outlet temperature, which were collected from an industrial gas-cracking furnace.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call