Abstract

This study describes a novel application of the use of molecular modeling tools for investigating the adsorption of organic micropollutants (OMPs) from water by nanocomposites. The partitioning of pharmaceuticals onto β-Cyclodextrin (β-CD) functionalized adsorbents was investigated at the molecular level to explore the atomistic interactions of pharmaceutical contaminants in water systems with β-CD and to provide insight into possible approaches for removal of pharmaceuticals from water. Molecular electrostatic surface potential mapping of β-CD derivatives was employed to examine the impact of substitution degree of β-CD and type of grafting agent on host-guest complexation. The stability of the complexes of selected pharmaceuticals and β-CD derivatives were assessed via molecular dynamics simulations to evaluate competitive adsorption between organic micropollutants (OMPs) and between OMPs and fulvic acid, a representative natural organic material (NOM) component found in water systems. Molecular electrostatic surface potential maps showed that grafting agents with aromatic and amine functional groups were found to provide attractive interactions for negatively charged OMPs. In addition, optimization of substitution degree of β-CD is necessary to enhance adsorption of target OMPs. Furthermore, it was found that aromatic ring bearing grafting agents can provide additional electrostatic attractions by π-π interactions with the aromatic ring of the OMPs. The impact of common water quality characteristics on adsorption was assessed and it was revealed that the effect of pH and calcium on adsorption depends on the ionizable functional groups present on the grafting agent. Molecular dynamics simulations showed that adsorption of target OMPs does not solely depend on hydrophobicity but is affected by electrostatic interactions. The simulations revealed that fulvic acid which is commonly present in environmental waters can be a competitor with ibuprofen for the β-CD cavity. Ultimately, this study showed that molecular level simulation can be effectively employed to investigate adsorption of OMPs by β-CD functionalized adsorbents and could be employed to enhance their design and subsequent environmental applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call