Abstract

Molecular layering of liquids in nanometer-scale confinement is demonstrated for typical lubricant constituents such as polyalphaolefins (PAO) and an ester by means of atomic force microscopy. Layering is observed in force vs. distance curves for poly-(1-decene) tetramers (PAO6) and undecamers (PAO40) and for a 2-ethylhexyl monoester on graphite, mica, and polished steel surfaces and is compared to the layering of hexadecane and 1-hexadecene. On graphite surfaces, the confined molecules are oriented parallel to the surfaces for all liquids, resulting in layers with a thickness comparable to the diameter of the alkyl chains. On mica, confined hexadecane molecules also lie parallel to the surface, while the molecules in the first layer of 1-hexadecene and PAOs take a more upright orientation. Confinement on the oxidized polished steel surfaces results in a molecular layering which most often resembles the layering on graphite and differs significantly from layering on the ionic oxide mica.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.